Mary Ann Liebert, Inc. is committed to working closely with librarians to create collections of content that fulfill the informational needs of institutions while providing excellent value.
Demonstrating plausible nonenzymatic polymerization mechanisms for prebiotic monomers represents a fundamental goal in prebiotic chemistry. While a great deal is now known about the potentially prebiotic synthesis of amino acids, our understanding of abiogenic polymerization processes to form polypeptides is less well developed. Here, we show that carbon disulfide (CS2), a component of volcanic emission and sulfide mineral weathering, and a widely used synthetic reagent and solvent, promotes peptide bond formation in modest yields (up to ∼20%) from α-amino acids under mild aqueous conditions. Exposure of a variety of α-amino acids to CS2 initially yields aminoacyl dithiocarbamates, which in turn generate reactive 2-thiono-5-oxazolidone intermediates, the thio analogues of N-carboxyanhydrides. Along with peptides, thiourea and thiohydantoin species are produced. Amino acid stereochemistry was preserved in the formation of peptides. Our findings reveal that CS2 could contribute to peptide bond formation, and possibly other condensation reactions, in abiogenic settings. Key Words: Amino acids—Peptides—Condensation—Polymerization—Carbon disulfide. Astrobiology 15, 709–716.
This paper was cited by:
Oligoarginine peptides slow strand annealing and assist non-enzymatic RNA replication
Tony Z. Jia, Albert C. Fahrenbach, Neha P. Kamat, Katarzyna P. Adamala, Jack W. Szostak
Nature Chemistry. Jun 2016, Vol. 8, No. 10: 915-921
Caleb Scharf, Nathaniel Virgo, H. James Cleaves II, Masashi Aono, Nathanael Aubert-Kato, Arsev Aydinoglu, Ana Barahona, Laura M. Barge, Steven A. Benner, Martin Biehl, Ramon Brasser, Christopher J. Butch, Kuhan Chandru, Leroy Cronin, Sebastian Danielache, Jakob Fischer, John Hernlund, Piet Hut, Takashi Ikegami, Jun Kimura, Kensei Kobayashi, Carlos Mariscal, Shawn McGlynn, Brice Menard, Norman Packard, Robert Pascal, Juli Pereto, Sudha Rajamani, Lana Sinapayen, Eric Smith, Christopher Switzer, Ken Takai, Feng Tian, Yuichiro Ueno, Mary Voytek, Olaf Witkowski, Hikaru Yabuta